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The difficulties of the numerical evaluation of three-center two-electron Coulomb and hy-
brid integrals over B functions, arise mainly from the presence of the hypergeometric series
and semi-infinite very oscillatory integrals in their analytical expressions, which are obtained
using the Fourier transform method.

This work presents a general approach for accelerating the convergence of these integrals
by first demonstrating that the hypergeometric function, involved in the analytical expres-
sions of the integrals of interest, can be expressed as a finite sum and by applying nonlinear
transformations for accelerating the convergence of the semi-infinite oscillatory integrals after
reducing the order of the differential equation satisfied by the integrand.

The convergence properties of the new approach are analysed to show that from the nu-
merical point of view the HD method corresponds to the most ideal situation.

The numerical results section illustrates the accuracy and unprecedented efficiency of eval-
uation of these integrals.

KEY WORDS: Nonlinear transformations for accelerating the convergence of semi-infinite
integrals, three-center two-electron Coulomb integrals, hybrid integrals

1. Introduction

Three-center two-electron Coulomb and hybrid integrals occur in the molecular
context and are numerous and difficult to evaluate to high accuracy. The B func-
tions [1–3] are chosen as the basis set of atomic orbitals. These functions are linear
combinations of Slater type orbitals [3,4] and they are well adapted to the Fourier trans-
form method [5,6] which allowed analytical expressions for molecular multicenter inte-
grals to be developed [7–22].

The principal source of difficulties regarding accuracy and speed up of the nu-
merical evaluation of the analytical expressions obtained for three-center two-electron
Coulomb and hybrid integrals arises from the presence of the hypergeometric series and
the spherical Bessel function in the integrands. Bessel functions lead to rapid oscillations
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of the integrands, whereas the hypergeometric series p+1Fp with p = 0, 1, . . . converges
as long as its argument z satisfies |z| < 1. If |z| is sufficiently small, convergence is usu-
ally good and the series can be used for the evaluation of the hypergeometric function.
If, however, |z| is slightly smaller than 1, convergence can become so slow that the in-
finite series is computationally useless. Finally, for |z| > 1, the hypergeometric series
diverges. However, it is often possible to find an analytic continuation – for instance
with the help of sequence transformations – which makes it possible to associate a finite
value to a divergent hypergeometric series even outside its circle of convergence [23].
These properties can cause difficulty in the evaluation of the integrals. It is in fact not
obvious that the nonlinear transformations can be applied to such integrals.

After a re-arrangement of the combined indices appearing as arguments in the hy-
pergeometric functions, it is shown that they can be expressed in the form of a finite
sum.

In previous work [24,25], we showed that the integrands of the semi-infinite in-
tegrals, involved in the analytical expressions of three-center two-electron Coulomb
and hybrid integrals, satisfy all the condition of application of the nonlinear D- and
D-transformations [26,27]. It is shown that these transformations are very efficient in
the evaluation of semi-infinite oscillatory integrals, unfortunately, their application de-
pends strongly on the order of the differential equation required to be satisfied by the
integrand.

In [25,28], we showed that this order can be reduced for a function of the form
f (x) = g(x)jλ(x) where g(x) ∼ h(x)eφ(x) as x → +∞ such that h(x) has an asymp-
totic expansion in inverse powers of x and φ(x) is real polynomial of degree k in x as
x → +∞. This method led to substantial simplifications in the application of D and
D [28]. Unfortunately, it cannot be applied to a large set of oscillatory functions since
we need g(x) to satisfy the above conditions.

This work presents a general method, based on the use of practical properties of the
reduced and spherical Bessel functions and Poincaré series, for reducing the orders of
differential equations, required to apply D and D, to two keeping all the other conditions
satisfied. Great simplifications are obtained using the new approach leading to new
method which we called HD and HD.

The convergence properties showed that from the numerical point of view, the HD

correponds to the most ideal situation.
The numerical results section illustrates clearly the substantial gain in the calcula-

tion times for a high predetermined accuracy.

2. Definitions and properties

The B functions are defined as follows [2,3]:

Bm
n,l

(
ζ �r) = (ζ r)l

2n+l (n+ l)! k̂n−1/2(ζ r) Y m
l (θ�r , ϕ�r ), (1)



H. Safouhi / Numerical evaluation of three-center two-electron Coulomb 215

where the reduced Bessel function k̂n−1/2(ζ r) is defined by [1,2]

k̂n−1/2(ζ r) = e−ζ r

ζ r

n∑
j=1

(2n− j − 1)!
(j − 1)!(n− j)!2

j−n(ζ r)j (2)

and the surface spherical harmonic Y m
l (θ, ϕ) is defined as follows [29]:

Y m
l (θ, ϕ) = im+|m|

[
(2l + 1)(l − |m|)!)

4π(l + |m|)!)
]1/2

P
|m|
l (cos θ)eim ϕ, (3)

P m
l (x) stands for the associated Legendre function of lth degree and mth order [30]:

P m
l (x) = (1− x2

)m/2
(

d

dx

)l+m[(x2 − 1
)l

2l l!
]
. (4)

The Slater type orbitals (STOs) are defined in normalized form according to the
following relationship [31,32]:

χm
n,l

(
ζ �r) = N(n, ζ )rn−1e−ζ rY m

l (θ�r , ϕ�r ),

where n = 1, 2, . . ., 0 � l � n−1 and−l � m � l. N(n, ζ ) stands for the normalisation
factor defined by

N(n, ζ ) = ζ−n+1

[
(2ζ )2n+1

(2n)!
]1/2

. (5)

The Slater type orbitals can be expressed as finite linear combinations of B func-
tions [2]:

χm
n,l

(
ζ �r) = n−l∑

p=p̃

(−1)n−l−p(n− l)!2l+p(l + p)!
(2p − n− l)!(2n− 2l − 2p)!!B

m
p,l

(
ζ �r), (6)

where

p̃ =
{

(n− l)/2 if n− l even,

(n− l + 1)/2 if n− l odd
(7)

and where the double factorial is defined by:

(2k)!! = 2 · 4 · 6 · · · (2k) = 2kk!,
(2k + 1)!! = 1 · 3 · 5 · · · (2k + 1) = (2k + 1)!

2kk! ,

0!! = 1.

The Fourier transform B
m

n,l(ζ, �p) of Bm
n,l(ζ �r) is given by [5,6]

B
m

n,l

(
ζ, �p)= 1

(2π)3/2

∫
�r

e−i �p �rBm
n,l

(
ζ �r)d�r (8)

=
√

2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2 + |p|2)n+l+1
Y m

l (θ �p, ϕ �p). (9)
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The analytical expression of the Fourier transform B
m

n,l(ζ, �p) of Bm
n,l(ζ �r) is obtained by

using the Rayleigh expansion of the plane wave function [33]:

e±i �p �r =
+∞∑
λ=0

λ∑
m=−λ

4π(±i)λjλ

(∣∣ �p∣∣∣∣�r∣∣)Y m
λ (θ�r , ϕ�r )

[
Y m

λ (θ �p, ϕ �p)
]∗

, (10)

where jλ(x) stands for the spherical Bessel function of order λ ∈ N, which is defined
by [30]

jλ(x) = (−1)λxλ

(
d

x dx

)λ(sin(x)

x

)
. (11)

Function jλ(x) satisfies the recurrence relations [30]

xjλ−1(x)+ xjλ+1(x)= 2λjλ(x),

jλ−1(x)− jλ+1(x)= 2j ′λ(x),
(12)

where

j0(x) = sin x

x
and j1(x) = sin x

x2
− cos x

x
. (13)

Also jλ(x) satisfies a 2nd order differential equation given by

jλ(x) = − 2x

x2 − λ2 − λ
j ′λ(x)− x2

x2 − λ2 − λ
j ′′λ (x). (14)

The zeros of jλ(x) will be referred to as jn
λ+1/2, n = 1, 2, . . . ; j 0

λ+1/2 is assumed to
be zero. For v ∈ R, jn

λ,v = jn
λ+1/2/v, n = 1, 2, . . . , are the successive zeros of jλ(vx)

and j 0
λ,v = 0.
We define the product EF , where E and F are sets of functions, as the set of

functions f (x) such that f (x) = g(x)h(x) where g ∈ E and h ∈ F .
We define A(γ ) to be the set of infinitely differentiable functions p(x), which have

asymptotic expansions in inverse powers of x as x →+∞, of the form:

p(x) ∼ xγ

(
a0 + a1

x
+ a2

x2
+ · · ·

)
(15)

and their derivatives of any order have asymptotic expansions, which can be obtained by
differentiating that in equation (15) formally term by term.

We let A
(γ )

, for γ ∈ R, be the set of functions p(x) such that p ∈ A(γ ) and
limx→+∞ x−γ p(x) �= 0. Thus, p ∈ A(γ ) has an asymptotic expansion in inverse powers
of x as x →+∞ of the form given by equation (15) with a0 �= 0.

We define the function α0(p) by α0(p) = a0; α0(p) �= 0 if p ∈ A(γ ). eA
(γ )

is
defined as the set of functions g(x):

g(x) = ep(x), where p ∈ A(γ ).
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The Fourier integral representation of the Coulomb operator 1/|�r − �R1| is given
by [34]

1

|�r − �R1|
= 1

2π2

∫
�k

e−i�k·(�r− �R1)

k2
d�k. (16)

The Gaunt coefficients are defined as [35–41]

〈l1m1|l2m2|l3m3〉 =
∫ π

θ=0

∫ 2π

ϕ=0

[
Y

m1
l1

(θ, ϕ)
]∗

Y
m2
l2

(θ, ϕ)Y
m3
l3

(θ, ϕ) sin θ dθ dϕ.

The hypergeometric function is given by [30]

2F1(α, β; γ ; x) =
+∞∑
r=0

(α)r(β)rx
r

(γ )rr! , (17)

where (α)n represents the Pochhammer symbol, which is defined by [30]
(α)0 = 1,

(α)n = α(α + 1)(α + 2) · · · (α + n− 1) = +(α + n)

+(α)
(n �= 0),

(18)

where + stands for the Gamma function [30]. For n ∈ N
+(n+ 1) = n! = 1 · 2 · 3 · · · n,

+
(
n+ 1

2

) = (2n)!
22n n!

√
π.

(19)

The infinite series equation (17) converge only for |x| < 1, and they converge
quite slowly if |x| is slightly less than one. The corresponding functions nevertheless
are defined in a much larger subset of the complex plane, including the case |x| > 1.
Convergence problems of this kind can often be overcome by using nonlinear sequence
transformations [23].

Let α be a negative integer. For n ∈ N

(α)n =


(α)n = 1 if n = 0,

(α)n = α(α + 1)(α + 2) · · · (α + n− 1) if n � −α,

(α)n = 0 if n � −α + 1.

(20)

3. The HD and HD methods for accelerating the convergence of semi-infinite
oscillatory integrals

Theorem 1 [26]. Let f (x) be integrable on [0,+∞[ and satisfies a linear differential
equation of order m of the form

f (x) =
m∑

k=1

pk(x)f (k)(x). (21)
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If pk for k = 1, 2, . . . , m satisfy the following conditions:

(1) pk are in A(ik), where ik � k for k = 1, 2, . . . , m,

(2) limx→+∞ p
(i−1)
k (x)f (k−i)(x) = 0 for k = i, i + 1, . . . , m; i = 1, . . . , m,

(3) ∀l � −1,
∑m

k=1 l(l − 1) · · · (l − k + 1)pk,0 �= 1; pk,0 = limx→+∞ x−kpk(x),

then, by using the nonlinear D-transformation, the approximation D(m)
n to S =∫∞

0 f (t) dt is given by [26]:

D(m)
n =

∫ xl

0
f (t) dt +

m−1∑
k=0

f (k)(xl)x
σk

l

n−1∑
i=0

βi,k

xi
l

, l = 0, 1, . . . , mn, (22)

where D(m)
n and βi,k , for k = 0, 1, . . . , m − 1, i = 0, 1, . . . , n − 1, are the (mn + 1)

unknowns, xl , l = 0, 1, . . . , are chosen to satisfy 0 < x0 < x1 < · · · , liml→+∞ xl =
+∞ and σk = min{k + 1, sk}, where sk = max{s ∈ Z, limx→+∞ xsf (k)(x) = 0}, for
k = 0, 1, . . . , m− 1.

The order of the above set of equations can be reduced by choosing xl, l =
0, 1, . . . , to be the successive positive zeros of f (x). In this case the equation (22)
can be re-written as [27]

D
(m)

n =
∫ xl

0
f (t) dt +

m−1∑
k=1

f (k)(xl)x
σk

l

n−1∑
i=0

βi,k

xi
l

, l = 0, 1, . . . , (m− 1)n. (23)

It is shown that D and D are efficient in accelerating the convergence of semi-
infinite very oscillatory integrals. Unfortunately, these transformations require the cal-
culation of the (m − 1) successive derivatives of the integrand, where m is the order of
the differential equation. This presents severe computational difficulties especially for
large values of quantum numbers when dealling with the semi-infinite integrals involved
in the analytical expressions of molecular multicenter integrals. The order of the linear
set to resolve for calculating the approximation of the semi-infinite integral is equal to
(mn+ 1) or ((m− 1)n+ 1) and can be very large if m and n increase.

We demonstrated that we can reduce the order of the differential equation satisfied
by a function f (x), which is of the form f (x) = g(x)jλ(x), where g(x) ∼ h(x)eφ(x) as
x → +∞ and where h(x) ∈ A(γ ) for some γ and φ(x) is a real polynomial of degree k

in x as x →+∞.
This approach is now generalized and can be applicable to a large set of functions

keeping all the other conditions required to apply D and D satisfied.

Theorem 2. Let g(x) be a function in C2[0,+∞[ of the form

g(x) = h(x)eφ(x), where h ∈ A(γ ), φ ∈ A(k), for some γ and k.

The function f (x) = g(x)jλ(x) satisfies the 2nd order linear differential equation

f (x) = p1(x)f ′(x)+ p2(x)f ′′(x), (24)
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where {
p1(x) ∈ A(−1) and p2(x) ∈ A(0) if k = 0,

p1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2) if k �= 0.

Proof. By replacing in equation (14) jλ(x) by f (x)/g(x), one can obtain the 2nd order
linear differential equation (24) satisfied by f (x), where

p1(x) = 2x2(h′(x)/h(x)+ φ′)− 2x

w(x)
, p2(x) = −x2

w(x)
(25)

and

w(x)=−x2

[(
h′(x)

h(x)
+ φ′

)′
−
(

h′(x)

h(x)
+ φ′

)2]
− 2x

(
h′(x)

h(x)
+ φ′

)
+ x2 − λ2 − λ. (26)

If k = 0 then p1(x) ∈ A(−1) and p2(x) ∈ A(0).
If k �= 0 then p1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2). �

The symbolic programming language Axiom [42] is used to develop analytically
the expressions of α0(p1) and α0(p2):

α0(p1) = α0(φ)

1+ α0(φ)2
and α0(p2) = − 1

1+ α0(φ)2
.

α0(p1) and α0(p2) are not equal to zero, thus the coefficients p1(x) and p2(x) are

in A(i) and A
(j)

where i and j are given in theorem 1.

Lemma 1. Let f (x) be in A(γ ) for some γ . Then:

(1) If g ∈ A(δ) then fg ∈ A(γ+δ) and α0(fg) = α0(f )α0(g).

(2) ∀k ∈ R, xkf ∈ A(k+γ ) and α0(x
kf ) = α0(f ).

(3) For all c �= 0, the function cf ∈ A(γ ) and α0(cf ) = cα0(f ).

(4) If g ∈ A(δ) and γ − δ > 0 then f +g ∈ A(γ ) and α0(f +g) = α0(f ). If γ = δ

and α0(f ) �= −α0(g) then f + g ∈ A(γ ) and α0(f + g) = α0(f )+ α0(g).

(5) Let m > 0 be an integer. If α0(f ) > 0 then f m ∈ A(mγ ) and α0(f
m) =

α0(f )m.

(6) Function 1/f ∈ A(−γ ) and α0(1/f ) = 1/α0(f ).

The proof of lemma 1 follows from the properties of Poincaré series.



220 H. Safouhi / Numerical evaluation of three-center two-electron Coulomb

Lemma 2. Let f ∈ A(γ ) where γ ∈ R and γ �= 0. Function k̂n+1/2(f (x)) can be
expressed by

k̂n+1/2

(
f (x)

) = f1(x)e−f (x) ∈ A(nγ )eA(γ )

, α0(f1) =
(
α0(f )

)n �= 0.

By using the analytical expression of the reduced Bessel function which is given
by equation (2), one can easily demonstrate lemma 2.

Theorem 3. If g(x) is a function in C2[0,+∞[ of the form

g(x) = h(x)eφ(x)

such that h ∈ A(γ ), φ ∈ A(k) with k > 0 and α0(φ) < 0, then the function f (x) =
g(x)jλ(x) is integrable on [0,+∞[ and satisfies all the conditions of applicability of the
nonlinear D- and D-transformations.

Proof. The integrability of f (x) = g(x)jλ(x) on [0,+∞[ follows from the fact that
g(x) ∈ C2[0,+∞[ and limx→+∞ φ(x) = −∞ (k > 0 and α0(φ) < 0).

By using theorem 2, we can show that f (x) satisfies the 2nd order linear differen-
tial equation with coefficients p1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2).

Function f (x) is exponentially decreasing, then

lim
x→+∞p

(i−1)
k (x)f (k−i)(x) = 0, k = 1, 2; i = 1, 2.

Since p1(x) ∈ A(−k+1) and p2(x) ∈ A(−2k+2), then

p1,0 = lim
x→+∞

1

x
p1(x) = 0 and p2,0 = lim

x→+∞
1

x2
p2(x) = 0,

thus

∀l � −1,

2∑
k=1

l(l − 1) · · · (l − k + 1)pk,0 = 0 �= 1.

From theorem 1 it follows that f (x) satisfies all the conditions of applicability of
D and D for accelerating the convergence of

∫ +∞
0 f (t) dt .

The approximation HD(2)
n of S = ∫ +∞0 f (t) dt using the D-transformation is given

by

HD(2)
n =

∫ xl

0
f (t) dt +

1∑
k=0

f (k)(xl)x
σk

l

n−1∑
i=0

βi,k

xi
l

, l = 0, 1, . . . , 2n. (27)

HD(2)
n and βi,k , i = 0, 1, . . . , n − 1, k = 0, 1, are the (2n + 1) unknowns of linear

system (27).
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By choosing xl = j l+1
λ+1/2 for l = 0, 1, . . . , n, linear system of equations (27) can be

rewritten as

HD
(2)

n =
∫ xl

0
f (t) dt + g(xl)j

′
λ(xl)x

σ1
l

n−1∑
i=0

βi,1

xi
l

, l = 0, 1, . . . , n. (28)

with the (n+ 1) unknowns HD
(2)

n and βi,1, i = 0, 1, . . . , n− 1. �

4. Three-center two-electron Coulomb and hybrid integrals over B functions

The three-center two-electron Coulomb integrals:

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫
�R, �R′
[
B

m1
n1,l1

[
ζ1
( �R −−→OA

)]]∗[
B

m3
n3,l3

[
ζ3
( �R′ − −→OB

)]]∗
× 1

| �R − �R′|B
m2
n2,l2

[
ζ2
( �R −−→OA

)]
B

m4
n4,l4

[
ζ4
( �R′ − −→OC

)]
d �R d �R′

=
∫
�r,�r ′
[
B

m1
n1,l1

(
ζ1�r
)]∗[

B
m3
n3,l3

[
ζ3
(�r ′ − �R3

)]]∗ 1

|�r − �r ′|
×B

m2
n2,l2

(
ζ2�r
)
B

m4
n4,l4

[
ζ4
(�r ′ − �R4

)]
d�r d�r ′, (29)

where �r = �R −−→OA, �r ′ = �R′ − −→OA, �R3 = −→AB and �R4 = −→AC.
The hybrid integrals:

Hn2l2m2,n4l4m4
n1l1m1,n3l3m3

=
∫
�R, �R′
[
B

m1
n1,l1

[
ζ1
( �R −−→OA

)]]∗[
B

m3
n3,l3

[
ζ3
( �R′ − −→OA

)]]∗ 1

| �R − �R′|
×B

m2
n2,l2

[
ζ2
( �R −−→OA

)]
B

m4
n4,l4

[
ζ4
( �R′ − −→OB

)]
d �R d �R′

=
∫
�r,�r ′
[
B

m1
n1,l1

(
ζ1�r
)]∗[

B
m3
n3,l3

(
ζ3�r ′
)]∗ 1

|�r − �r ′|B
m2
n2,l2

(
ζ2�r
)

×B
m4
n4,l4

[
ζ4
(�r ′ − �R)] d�r d�r ′, (30)

where �r = �R −−→OA, �r ′ = �R′ − −→OA and �R = −→AB .
The following arguments can also be applied to hybrid integrals.
Let us consider Kn2l2m2,n4l4m4

n1l1m1,n3l3m3
. By inserting the Fourier integral representation of

the Coulomb operator (16) into (29), one can obtain

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 1

2π2

∫
�x

ei�x· �R4
〈
B

m1
n1l1

(
ζ1�r
)∣∣e−i�x·�r ∣∣Bm2

n2l2

(
ζ2�r
)〉
�r

×〈Bm4
n4l4

(
ζ4 �r ′′

)∣∣e−i�x· �r ′′∣∣Bm3
n3l3

[
ζ3
( �r ′′ − ( �R3 − �R4

))]〉∗
�r ′′

d�x
x2

. (31)

In the term T1 = 〈Bm1
n1l1

(ζ1�r)|e−i�x·�r |Bm2
n2l2

(ζ2�r)〉�r involved in the above expression,
the two B functions are centered on the same point and therefore the radial part of their
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product has an analytical expression which can easily be obtained using equations (1)
and (2). Consequently, T1 has an analytical expression which is given by

T1 =
[
2n1+l1+n2+l2(n1 + l1)!(n2 + l2)!

]−1
ζ

l1
1 ζ

l2
2

√
π

2x

×
lmax∑

l=lmin,2

(−i)l〈l1m1|lm1 −m2|l2m2〉
[
Y

m1−m2
l (θ�x, ϕ�x)

]∗
×

n1+n2∑
k=2

k2∑
i=k1

[
(2n1 − i − 1)!(2n2 − k + i − 1)!ζ i−1

1 ζ k−i−1
2

(i − 1)!(n1 − i)!(k − i − 1)!(n2 − k + i)!2n1+n2−k

]

×[x/2ζs ]l+1/2+(k + l1 + l2 + l + 1)

ζ
k+l1+l2+1/2
s +(l + 3/2)

[
1+ x2

ζ 2
s

]−k−l1−l2

×2F1

(
l − k − l1 − l2 + 1

2
,
l − k − l1 − l2

2
+ 1; l + 3

2
;−x2

ζ 2
s

)
, (32)

where

k1 = max(1, k − n2), k2 = min(n1, k − 1), ζs = ζ1 + ζ2

and where [38]

lmax= l1 + l2,

lmin=


max

(|l1 − l2|, |m2 −m1|
)
,

if lmax +max(|l1 − l2|, |m2 −m1|) is even,

max
(|l1 − l2|, |m2 −m1|

)+ 1,

if lmax +max
(|l1 − l2|, |m2 −m1|) is odd.

The subscript l = lmin, 2 in the first summation symbol in equation (32) implies
that the summation index l runs in steps of 2 from lmin to lmax.

One of the arguments of the hypergeometric function η/2 = (l − k − l1 − l2
+1)/2 or (l − k − l1 − l2)/2 + 1 = (η + 1)/2 is a negative integer. By using equa-
tion (20), one can easily show that the hypergeometric series involved in equation (32)
is reduced to a finite expansion:

2F1

(
η

2
,
η + 1

2
; l + 3

2
;−x2

ζ 2
s

)
=

η′∑
r=0

(−1)r (η/2)r((η + 1)/2)rx
2r

(l + 3/2)rr!ζ 2r
s

, (33)

where η′ = −η/2 if η is even, otherwise η′ = −(η + 1)/2.
By applying the Fourier transform method to the term in �r ′′ from equation (31)

after substituting the Rayleigh expansion equation (10) of a plane wave, we obtain an
expression for Kn2l2m2,n4l4m4

n1l1m1,n3l3m3
, involving a semi infinite very oscillatory integral, which is
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given by [13,22,25]:

Kn2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)3(2l3 + 1)!!(2l4 + 1)!!ζ l1
1 ζ

l2
2 ζ

2n3+l3−1
3 ζ

2n4+l4−1
4

×(n3 + l3 + n4 + l4 + 1)!
(n3 + l3)!(n4 + l4)!

lmax∑
l=lmin,2

(−i)l〈l1m1|l2m2|lm1 −m2〉

×
n1+n2∑
k=2

k2∑
i=k1

[
(2n1 − i − 1)!(2n2 − i − 1)!ζ i−1

1 ζ k−i−1
2

(i − 1)!(n1 − i)!(k − i − 1)!(n2 − k + i)!2n1+n2−k

]

×
l4∑

l′4=0

l′4∑
m′4=−l′4

(i)l4+l′4(−1)l′4
〈l4m4|l4 − l′4m4 −m′4|l′4m′4〉
(2l′4 + 1)!![2(l4 − l′4)+ 1]!!

×
l3∑

l′3=0

l′3∑
m′2=−l′3

(i)l3+l′3
〈l3m3|l3 − l′3m3 −m′3|l′3m′3〉
(2l′3 + 1)!![2(l3 − l′3)+ 1]!!

×
l′3+l′4∑

l′=|l′3−l′4|

〈
l′4m
′
4

∣∣l′3m′3∣∣l′m′4 −m′3
〉
Rl′

34Y
m′4−m′3
l′ (θ �R34

, ϕ �R34
)

×
∑
l34

〈
l3 − l′3m3 −m′3

∣∣l4 − l′4m4 −m′4
∣∣l34m34

〉
×

l+l34∑
λ=|l−l34|

iλ
〈
lm1 −m2

∣∣l34
(
m4 −m′4

)− (m3 −m′3
)∣∣λµ

〉
×

8l∑
j=0

(
8l

j

)
(−1)j+(k + l1 + l2 + l + 1)

2n3+n4+l3+l4−j+1+l+1/2(n3 + n4 + l3 + l4 − j + 1)!

× ζ nk−l−1
s

+(l + 3/2)

η′∑
r=0

(−1)r (η/2)r((η + 1)/2)r

(l + 3/2)rr!ζ 2r
s

×
∫ 1

s=0
sn33(1− s)n44Y

−µ
λ (θ�v, ϕ�v)

×
∫ +∞

x=0

[
ζ 2

s + x2
]−nk

xnx+1/2jλ(vx)
k̂ν[R34γ (s, x)]
[γ (s, x)]nγ

dx ds, (34)

where

k1 = max(1, k − n2), k2 = min(n1, k − 1), ζs = ζ1 + ζ2,∣∣(l3 − l′3
)− (l4 − l′4

)∣∣ � l34 �
(
l3 − l′3

)+ (l4 − l′4
)
,

nx = l3 − l′3 + l4 − l′4 + 2r + l, nk = k + l1 + l2,

n33 = n3 + l3 + l4 − l′4, n44 = n4 + l4 + l3 − l′3,
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nγ = 2(n3 + l3 + n4 + l4)−
(
l′3 + l′4

)− l′ + 1,

µ = (m1 −m2)−
(
m4 −m′4

)+ (m3 −m′3
)
,[

γ (s, x)
]2 = (1− s)ζ 2

4 + sζ 2
3 + s(1− s)x2,

η′ = −η/2 if η is even, otherwise η′ = −(η + 1)/2,

η = l − k − l1 − l2 + 1, 8l = (l3 + l4 − l′)/2,

�v = s
( �R3 − �R4

)− �R3 = s �R34 − �R3,

ν = n3 + n4 + l3 + l4 − l′ − j + 1/2,

m34 =
(
m3 −m′3

)− (m4 −m′4
)
.

The numerical evaluation of the above analytical expression presents severe nu-
merical and computational difficulties. This is due to the presence of the semi-infinite
integrals, which will be referred to as K̃(s), whose integrands oscillate rapidly, due to
the presence of the spherical Bessel functions jλ(vx), in particular for large values of λ

and v since the zeros of the function become closer.
The use of Gauss–Laguerre quadrature even to high order gives inaccurate results

in particular when s is close to 0 or 1. This region carry a very small weight because of
the expression sn33(1− s)n44 [19–21,43–45].

The epsilon algorithm of Wynn [46] and Levin’s u-transform [47] were also
used [48] to accelerate the convergence of the semi-infinite integral after transforming it
into infinite series

K̃(s) =
+∞∑
n=0

∫ jn+1
λ,v

jn
λ,v

[
ζ 2

s + x2
]−nk

xnx+1/2jλ(vx)
k̂ν[R34γ (s, x)]
[γ (s, x)]nγ

dx. (35)

Unfortunately, as it has been shown [24,25], the use of these methods is prohibitively
long for sufficient accuracy.

Now, let us consider the integrand of K̃(s) given by

fk,s(x) = gk(x)jλ(vx),

where

gk(x) = xnx−2nk+1/2

[
1+ ζ 2

s

x2

]−nk k̂ν[R34γ (s, x)]
[γ (s, x)]nγ

.

Let the function φ(x) be defined by

φ(x) = R34γ (s, x) = R2

√
(1− s)ζ 2

4 + sζ 2
3 + s(1− s)x2.

From lemma 1, it follows that φ(x) ∈ A(1) and 1/[γ (s, x)]nγ ∈ A(−nγ ). Using
lemmas 1 and 2, we can obtain an expression for gk(x), which is given by

gk(x) = g1(x)e−φ(x) where

 g1 ∈ A(n+nx−2nk−nγ−1/2),

φ ∈ A(1) with α0(φ) > 0.
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By using theorem 2, we can show that fk,s(x) satisfies 2nd order linear differential
equation of the form given by equation (24). From theorem 3, it follows that fk,s(x)

is integrable on [0,+∞[ and satisfies all the conditions of applicability of D- and D-
transformations. Since fk,s(x) is exponentially decreasing, σk = k + 1.

The approximations HDn
(2) of K̃(s) can be obtained by solving the following set

of linear equations:

HD
(2)

n =
∫ xl

0
f (t) dt + g(xl)j

′
λ(vx)x2

l

n−1∑
i=0

βi,1

xi
l

, l = 0, 1, . . . , n, (36)

where xl = j l+1
λ,v , n = 0, 1, 2, . . . , which are the successive zeros of jl(vx). HD

(2)

n and
βi,1 for i = 0, 1, . . . , n− 1 are the (n+ 1) unknowns of linear system (36).

For the hybrid integral, the integrand fh,s(x) of the semi-infinite integral which
will be referred to as H̃(s) is given by

fh,s(x) = [ζ 2
s + x2

]−nk
xnx+1/2jλ(vx)

k̂ν [R1γ (s, x)]
[γ (s, x)]nγ

,

where �v = s �R1 and all the other arguments are defined according to the equation (34).
Using the same arguments, one can show that fh,s(x) satisfies a 2nd order dif-

ferential equation of the form required to apply the D- and D-transformations. The

approximation HD
(2)

n of H̃(s) can be obtained by solving equation (36).

5. Convergence properties

Let us consider the linear system equation (22). We let

S =
∫ +∞

0
f (t) dt, F (x) =

∫ x

0
f (t) dt

and ;k(x) = xσk f (k)(x) for k = 0, 1, . . . , m − 1. Let vector (γ0, γ1, . . . , γmn) be the
first row of the inverse of the matrix of the system equation (22).

Using the fact that the first column of the matrix of the linear system equation (22)
is the vector (1, 1, . . . , 1)T (T denotes transpose), we can easily show that

∑mn
l=0 γl = 1

and therefore
∑mn

l=0 |γl| � 1.

Corollary 1 [49].

∣∣S −D(m)
n

∣∣ � ( mn∑
l=0

|γl|
)

o
(
n−j
)
, ∀j > 0 as n→+∞.

Corollary 2 [49]. If
∑mn

l=0 |γl| � L <∞, then∣∣S −D(m)
n

∣∣ = o
(
n−j
)
, ∀j > 0 as n→+∞. (37)
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Now, let us consider the linear system given by equation (28). We define the matrix
M2 by

M2 =



F(x0)

;1(x0)

F (x1)

;1(x1)
. . . F (xn)

;1(xn)

1 1 . . . 1

x−1
0 x−1

1 . . . x−1
n

...
...

...

x−n+1
0 x−n+1

1 . . . x−n+1
n

 (38)

and let K2 be the matrix obtained after replacing the first row of M2 by the vector(
1

;1(x0)
,

1

;1(x1)
, . . . ,

1

;1(xn)

)
.

Let Vl be the minor of F(xl)/;1(xl) in M2 or of 1/;1(xl) in K2. Using the

Cramer’s rule, one can express HD
(2)

n as

HD
(2)

n =
det(M2)

det(K2)
=
∑n

l=0(−1)l[Vl/;1(xl)]F(xl)∑n
l=0(−1)l[Vl/;1(xl)] . (39)

The minors Vl, l = 0, 1, . . . , n, are given by

V0=V
(
x−1

1 , . . . , x−1
n

)
, Vn = V

(
x−1

0 , . . . , x−1
n−1

)
,

Vl =V
(
x−1

0 , . . . , x−1
l−1, x−1

l+1, . . . , x−1
n−1

)
, l = 1, . . . , n− 1,

where V (x0, x1, . . . , xn−1) is the Vandermonde determinant which can be expressed by

V (x0, x1, . . . , xn−1) =
∏

0�i<j�n−1

(xj − xi). (40)

Since x0 < x1 < · · · < xn−1, it follows that V (x0, x1, . . . , xn−1) > 0, and therefore all
Vl , for l = 0, 1, . . . , n have the same sign.

Using the fact that HD
(2)

n =
∑n

l=0 γlF (xl), we can obtain

γl = (−1)l[Vl/;1(xl)]∑n
i=0 (−1)i[Vi/;1(xi)] , 0 � l � n. (41)

Using the fact that xl = j l
λ+1/2, for l = 0, 1, . . ., which are the successive zeros of

jλ(x), one can easily show that the function ;1(x) = xσ1g(x)j ′λ(x) satisfies

;1(xl);1(xl+1) < 0, l = 0, 1, 2, . . . . (42)

It is easy to show that all (−1)l[Vl/;1(xl)], for l = 0, 1, . . . , n, have the same
sign. Therefore, ∀l, γl > 0 holds and, consequently,

n∑
l=0

|γl| =
n∑

l=0

γl = 1.



H. Safouhi / Numerical evaluation of three-center two-electron Coulomb 227

Now corollary 2 becomes:

Corollary 3. |S −HD
(2)

n | = o(n−j ), ∀j > 0 as n→ +∞.

The convergence properties of the nonlinear HD-transformation are without any
constraint. From the numerical point of view, the situation in which γl > 0, ∀l, corre-
sponds to the most ideal one.

6. Conclusion

This work presents a general approach for reducing the order of the differential
equation required to apply the nonlinear D- and D-transformations, keeping all the other
conditions satisfied. The integrand should be of the form f (x) = g(x)jλ(x), where
g(x) = h(x)eφ(x) and where h ∈ A(γ ), φ ∈ A(k) with k > 0 and α0(φ) < 0.

These conditions are now shown to be satisfied by the integrands of the semi-
infinite integrals involved in the analytical expressions of molecular bielectronic inte-
grals over B functions, which occur in molecular context and are numerous and difficult
to evaluate. Therefore rapidity is the primordial criterion when the precision has been
reached.

The present work illustrates the substantial optimisation regarding calculation
times obtained using the HD method over the nonlinear D- and D-transformations,
which as we showed [24,28] are more rapid than Levin’s u-transform and the ε-algorithm
of Wynn.

7. Numerical results

The symbolic programming language Axiom was used to provide the exact values
of K̃(s) and H̃(s) to 20 exact decimals using the infinite series (35) which we sum until
N = max (see tables 1 and 4).

Table 1
Exact values of K̃(s) obtained with 20 correct decimals (nx = λ, ν = n3+n4+1/2, nγ = 2(n3+n4)+1,

ζ3 = ζ1 and ζ4 = ζ2).

s n3 n4 nk λ R3 ζ1 R4 ζ2 max K̃(s)

0.005 1 1 2 0 2.5 1.5 1.5 0.5 81 0.1711045428280131D+01
0.005 2 1 3 1 4.5 2.5 4.0 1.5 225 0.8773983854881832D−05
0.999 2 2 3 2 3.0 2.0 2.5 2.5 292 0.6582270306670542D−05
0.999 3 2 2 3 3.5 1.5 2.5 0.5 304 0.2602612259522619D+00
0.999 3 3 3 4 2.0 2.0 1.5 1.5 186 0.7482795301329374D−02
0.010 4 3 3 4 3.5 2.0 3.0 1.5 116 0.4784629408043506D−01
0.999 4 3 5 5 6.5 1.0 5.5 0.5 145 0.3900383649993194D+02
0.005 4 4 5 5 4.5 1.5 3.0 1.0 67 0.2412209767998331D+02
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Table 2
Evaluation of K̃(s) using HD of order n. Time T is in msecs (nx = λ, ν = n3 + n4 + 1/2, nγ =

2(n3 + n4)+ 1, ζ3 = ζ1 and ζ4 = ζ2).

s n3 n4 nk λ R3 ζ3 R4 ζ4 n K̃(s) Error T

0.005 1 1 2 0 2.5 1.5 1.5 0.5 5 0.1711045428D+01 0.82D−10 0.02
0.005 2 1 3 1 4.5 2.5 4.0 1.5 5 0.8773983369D−05 0.49D−12 0.03
0.999 2 2 3 2 3.0 2.0 2.5 2.5 5 0.6582262522D−05 0.78D−11 0.03
0.999 3 2 2 3 3.5 1.5 2.5 0.5 8 0.2602612260D+00 0.12D−12 0.06
0.999 3 3 3 4 2.0 2.0 1.5 1.5 5 0.7482795317D−02 0.15D−10 0.02
0.010 4 3 3 4 3.5 2.0 3.0 1.5 9 0.4784629403D−01 0.49D−10 0.07
0.999 4 3 5 5 6.5 1.0 5.5 0.5 8 0.3900383650D+02 0.12D−10 0.05
0.005 4 4 5 5 4.5 1.5 3.0 1.0 9 0.2412209768D+02 0.20D−09 0.07

Table 3
Evaluation of K̃(s) using D of order n. Time T is in msecs (nx = λ, ν = n3+n4+1/2, nγ = 2(n3+n4)+1,

ζ3 = ζ1 and ζ4 = ζ2).

s n3 n4 nk λ R3 ζ3 R4 ζ4 n K̃(s) Error T

0.005 1 1 2 0 2.5 1.5 1.5 0.5 3 0.1711045428D+01 0.14D−10 0.05
0.005 2 1 3 1 4.5 2.5 4.0 1.5 3 0.8773984785D−05 0.93D−12 0.05
0.999 2 2 3 2 3.0 2.0 2.5 2.5 3 0.6582271450D−05 0.11D−11 0.05
0.999 3 2 2 3 3.5 1.5 2.5 0.5 4 0.2602612260D+00 0.41D−11 0.10
0.999 3 3 3 4 2.0 2.0 1.5 1.5 3 0.7482795284D−02 0.17D−10 0.05
0.010 4 3 3 4 3.5 2.0 3.0 1.5 4 0.4784629410D−01 0.18D−10 0.11
0.999 4 3 5 5 6.5 1.0 5.5 0.5 4 0.3900383650D+02 0.10D−09 0.10
0.005 4 4 5 5 4.5 1.5 3.0 1.0 4 0.2412209768D+02 0.19D−09 0.10

Table 4
Exact values of H̃(s) obtained with 20 correct decimals (nx = λ, ν = n3+n4+ 1/2, nγ = 2(n3+n4)+ 1

and ζ1 = ζ2 = 0.50).

s n3 n4 nk λ R1 ζ3 ζ4 max H̃(s)

0.999 1 1 2 0 2.0 1.5 1.0 106 0.4389694792638539D−01
0.999 2 1 2 1 2.5 1.0 1.0 128 0.8381930319971030D+00
0.999 2 2 2 2 4.5 1.5 0.5 225 0.6591267598109963D−02
0.999 2 2 3 2 3.0 1.5 0.5 123 0.2511838981888497D−01
0.999 3 2 3 2 5.0 2.0 1.0 177 0.1464115160117386D−03
0.999 3 3 3 3 4.5 1.5 0.5 168 0.1444960390423629D+00
0.999 4 3 3 3 2.0 2.0 1.0 109 0.7352140095334253D−01
0.999 4 4 4 4 4.0 2.0 1.0 139 0.2113558106217673D−01

All the finite integrals are evaluated using the Gauss–Legendre quadrature of or-
der 16. The linear systems (28) and (36) are solved using the LU decomposition method.

In the numerical evaluation ofKn200,n400
n100,n300, we let nx and λ vary to show the efficiency

of the new methods in the evaluation of the semi-infinite integrals whose integrands are
very oscillating (see tables 7–9).

The calculation times are computed using an IBM RS6000 340 to illustrate the
rapidity of the new method for a high predetermined accuracy.
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Table 5
Evaluation of H̃(s) using HD of order n. Time T is in msecs (nx = λ, ν = n3 + n4 + 1/2, nγ =

2(n3 + n4)+ 1 and ζ1 = ζ2 = 0.50).

s n3 n4 nk λ R1 ζ3 ζ4 n H̃(s) Error T

0.999 1 1 2 0 2.0 1.5 1.0 6 0.4389694793D−01 0.52D−12 0.03
0.999 2 1 2 1 2.5 1.0 1.0 5 0.8381930327D+00 0.70D−09 0.02
0.999 2 2 2 2 4.5 1.5 0.5 6 0.6591267592D−02 0.66D−11 0.03
0.999 2 2 3 2 3.0 1.5 0.5 6 0.2511838982D−01 0.66D−12 0.03
0.999 3 2 3 2 5.0 2.0 1.0 6 0.1464115159D−03 0.76D−13 0.03
0.999 3 3 3 3 4.5 1.5 0.5 5 0.1444960396D+00 0.57D−09 0.03
0.999 4 3 3 3 2.0 2.0 1.0 6 0.7352140096D−01 0.52D−11 0.03
0.999 4 4 4 4 4.0 2.0 1.0 6 0.2113558106D−01 0.35D−12 0.03

Table 6
Evaluation of H̃(s) using D of order n. Time T is in msecs (nx = λ, ν = n3+n4+1/2, nγ = 2(n3+n4)+1

and ζ1 = ζ2 = 0.50).

s n3 n4 nk λ R1 ζ3 ζ4 n H̃(s) Error T

0.999 1 1 2 0 2.0 1.5 1.0 3 0.4389694793D−01 0.37D−12 0.06
0.999 2 1 2 1 2.5 1.0 1.0 3 0.8381930323D+00 0.34D−09 0.05
0.999 2 2 2 2 4.5 1.5 0.5 3 0.6591267633D−02 0.34D−10 0.06
0.999 2 2 3 3 3.0 1.5 0.5 3 0.2511838982D−01 0.41D−12 0.05
0.999 3 2 3 3 5.0 2.0 1.0 3 0.1464115161D−03 0.96D−13 0.05
0.999 3 3 3 3 4.5 1.5 0.5 3 0.1444960392D+00 0.15D−09 0.05
0.999 4 3 3 4 2.0 2.0 1.0 3 0.7352140096D−01 0.53D−11 0.06
0.999 4 4 4 4 4.0 2.0 1.0 3 0.2113558106D−01 0.16D−11 0.05

Table 7
Exact values of Kn200,n400

n100,n300 obtained with 20 correct decimals (ζ1 = ζ3 and ζ2 = ζ4).

n1 n2 n3 n4 nγ R3 ζ3 R4 ζ4 Kn300,n400
n100,n200

1 1 1 1 5 6.50 2.50 2.00 1.00 0.1499696884201018D−01
2 1 2 1 7 6.50 4.00 4.00 3.00 0.1131392221111710D+00
2 2 2 2 9 8.00 3.50 2.00 3.00 0.4605249321948066D+01
2 2 3 2 11 9.50 3.50 3.00 3.00 0.1849981520442438D+01
2 2 3 3 13 7.00 2.50 3.00 3.00 0.1069300805307034D+04
2 2 4 3 15 9.50 3.50 4.00 3.00 0.1097122311454484D+02
2 2 4 4 17 8.00 3.00 3.50 3.50 0.1356218523398202D+02
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Table 8
Evaluation of Kn200,n400

n100,n300 using HD of order n. Time T is in msecs (nγ = 2(n3 + n4) + 1, ζ3 = ζ1 and
ζ4 = ζ2).

n1 n2 n3 n4 R3 ζ1 R4 ζ2 n Kn200,n400
n100,n300 Error T

1 1 1 1 6.5 2.5 2.0 1.0 9 0.1499696884D−01 0.38D−12 1.10
2 1 2 1 6.5 4.0 4.0 3.0 9 0.1131392222D+00 0.43D−10 3.23
2 2 2 2 8.0 3.5 2.0 3.0 10 0.4605249322D+01 0.17D−09 6.81
2 2 3 2 9.5 3.5 3.0 3.0 9 0.1849981521D+01 0.59D−09 5.47
2 2 3 3 7.0 2.5 3.0 3.0 9 0.1069300805D+04 0.12D−08 5.42
2 2 4 3 9.5 3.5 4.0 3.0 10 0.1097122311D+02 0.57D−09 6.86
2 2 4 4 8.0 3.0 3.5 3.5 10 0.1356218523D+02 0.29D−10 6.87

Table 9
Evaluation of Kn200,n400

n100,n300 using D of order n. Time T is in msecs (nγ = 2(n3 + n4) + 1, ζ3 = ζ1 and
ζ4 = ζ2).

n1 n2 n3 n4 R3 ζ1 R4 ζ2 n Kn200,n400
n100,n300 Error T

1 1 1 1 6.5 2.5 2.0 1.0 4 0.14996968D−01 0.11D−12 1.65
2 1 2 1 6.5 4.0 4.0 3.0 4 0.11313922D+00 0.13D−10 5.01
2 2 2 2 8.0 3.5 2.0 3.0 4 0.46052493D+01 0.37D−09 8.38
2 2 3 2 9.5 3.5 3.0 3.0 4 0.18499815D+01 0.10D−09 8.42
2 2 3 3 7.0 2.5 3.0 3.0 4 0.10693008D+04 0.11D−08 8.40
2 2 4 3 9.5 3.5 4.0 3.0 4 0.10971223D+02 0.92D−09 8.41
2 2 4 4 8.0 3.0 3.5 3.5 4 0.13562185D+02 0.76D−10 8.38
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